Recevez notre newsletter Formation
En renseignant votre adresse email, vous acceptez de recevoir tous les mois les derniers articles du Mag Formation Cegos et vous prenez connaissance de notre politique de confidentialité. Vous pouvez vous désinscrire via les liens de désinscription. Vos données personnelles sont utilisées dans le cadre strict de l’exécution et du suivi de votre demande par les services CEGOS en charge du traitement. Elles sont nécessaires à l’exécution de ce service. Elles sont conservées pour une durée de trois ans à compter de notre dernier contact. En application de la réglementation sur la protection des données à caractère personnel, vous bénéficiez d’un droit d’accès, de rectification, de limitation du traitement ainsi que d’un droit d’opposition et de portabilité de vos données si cela est applicable que vous pouvez exercer en vous adressant à CEGOS, DPO- Direction des Systèmes d’Information, 19 rue René Jacques, 92798 Issy-les-Moulineaux. Vous bénéficiez également du droit d’introduire une réclamation auprès d’une autorité de contrôle si nécessaire.

Learning analytics en formation professionnelle : comment exploiter les données ?

13 février 2026
Ecrit par Aurélie Tachot / Avec l'expertise de Carolina Gracia Moreno

Améliorer la performance des formations et l’engagement de ses apprenants passe forcément par l’analyse des données d’apprentissage. Récoltées tout au long d’une formation, ces métriques constituent une opportunité de personnaliser davantage les parcours. À condition, toutefois, de les faire parler et de les rendre intelligibles. Comment analyser les learning analytics pour éclairer sa prise de décisions ? Éléments de réponses.

Learning analytics : qu'est-ce que c'est ?

Commençons par définir les learning analytics ou données d'apprentissage. Elles désignent la mesure, la collecte, l'analyse et l'exploitation des données générées lors des parcours de formation. En formation professionnelle, ces données proviennent principalement des plateformes LMS (Learning Management System), des modules e-learning, des outils collaboratifs et des évaluations.

Objectif des learning analytics

Transformer ces données brutes en insights actionnables pour améliorer l'efficacité pédagogique, personnaliser les parcours et optimiser le retour sur investissement des actions de formation.

Quels sont les 4 types de données d'apprentissage ?

  • Descriptif : Que s'est-il passé ? (taux de complétion, temps passé, scores)
  • Diagnostique : Pourquoi est-ce arrivé ? (analyse des causes d'échec ou de réussite)
  • Prédictif : Que va-t-il se passer ? (identification des apprenants à risque)
  • Prescriptif : Que devons-nous faire ? (recommandations d'actions correctives)

L'efficacité des formations est regardée

Un contexte économique qui pousse à mesurer le ROI

Les outils digitaux utilisés au sein des parcours de formation génèrent des milliers de données. Trop souvent inexploitées, ces datas sont pourtant des mines d'or qui peuvent aider les professionnels de la formation à mieux adapter leurs contenus à leurs cibles. Et donc à rendre les parcours plus performants. « Étant donné les aléas économiques actuels, les entreprises sont de plus en plus regardantes sur l'efficacité des formations. Certaines s'intéressent par exemple à leurs données pour tenter de mesurer le retour sur investissement de leurs actions de formation », constate Carolina Gracia Moreno, Manager des offres Ingénierie Pédagogique et Efficacité Professionnelle chez Cegos.

Des outils technologiques qui démocratisent l'analyse

D'autres raisons expliquent cet engouement pour l'analyse de données. Parmi elles : la généralisation des plateformes LMS, qui permettent de recueillir ces précieuses données, notamment le taux de complétion des activités pédagogiques par les apprenants. « La démocratisation des outils de visualisation encourage aussi les entreprises à s'emparer de leurs données de formation », explique-t-elle. Les solutions de Business Intelligence (B.I.) et les tableaux de bord interactifs sont désormais dans les mains des non-experts. Ces outils permettent notamment de récupérer automatiquement les données de formation issues du big data et de les rendre visuellement compréhensibles (via des graphiques, des tableaux…), simplifiant ainsi le suivi.

La bonne nouvelle, c'est qu'il est possible d'exploiter les données liées à la formation – qu'elles soient individuelles ou collectives – tout en respectant la législation sur la protection de la vie privée (RGPD).

Le taux de complétion : un indicateur à suivre absolument

Pourquoi le taux de complétion est-il essentiel ?

Il est vain de vouloir exploiter efficacement l'ensemble des learning analytics disponibles. Mieux vaut suivre les données les plus stratégiques comme celles liées à la performance de la formation. Outre le nombre d'inscrits par session de formation, il est intéressant de se pencher sur le taux de complétion d'une activité pédagogique. Celui-ci porte sur le pourcentage d'apprenants terminant un module ou un cours en ligne, donc étant suffisamment intéressés pour aller jusqu'au bout.

Comment interpréter les résultats du taux de complétion ?

Ce taux permet de savoir si le contenu rencontre véritablement les attentes des apprenants et si ces derniers sont actifs dans la réalisation des exercices proposés. Aucun standard reconnu n'existe en matière de taux de complétion. Cependant, l'expérience révèle que celui-ci est plus faible dans un parcours 100 % en e-learning que dans un parcours en blended-learning, qui mixe plusieurs modalités d'apprentissage.

Quels sont les benchmarks à retenir ?

« En e-learning, un bon taux de complétion c'est lorsque, sur 100 inscrits, 70 terminent leur parcours. À défaut, cela veut dire que la formation mérite des ajustements, qui ne sont pas forcément lourds. Le parcours peut par exemple être redécoupé différemment, la distribution de la formation peut davantage basculer en présentiel, des actions de mentorat ou de tutorat peuvent être ajoutées… », illustre Carolina Gracia Moreno.

Quels autres indicateurs d'engagement surveiller ?

Le taux de complétion – qui est différent si la formation suivie est obligatoire ou non – en dit également long sur l'engagement des apprenants. Tout comme d'autres données, qu'il est également intéressant d'exploiter dont leur participation aux forums de discussion, (via un volume d'interactions, par exemple), le nombre de questions posées en ligne au formateur…

La progression s'évalue en temps réel

Rectifier rapidement grâce aux données en temps réel

L'un des avantages de l'analyse de l'apprentissage, c'est qu'elle permet de rapidement rectifier le tir lorsque plusieurs indicateurs laissent entendre qu'une formation est trop ambitieuse ou qu'un groupe d'apprenants est en situation d'échec, par exemple. Et pour cause : les données sont recueillies en temps réel tout au long du parcours.

Des tests fréquents pour un suivi optimal

Dans une formation, notamment à distance, les tests de connaissances sont très fréquents. Ainsi, il est relativement facile, pour les enseignants qui ont accès aux résultats, d'agir. S'ils voient que leurs apprenants ne sont pas en situation de progression, ils peuvent offrir un accompagnement personnalisé à ceux qui sont en difficulté, ajouter des ressources complémentaires, préconiser des séances de coaching, réallouer d'autres ressources…

La personnalisation des parcours grâce aux learning analytics

L'analyse de l'apprentissage en temps réel est alors au service de la personnalisation des parcours de formation. Ce pilotage en temps réel modifie la posture des formateurs. Éclairés par ces données, les formateurs peuvent être force de propositions concernant les ajustements à réaliser en salle de classe ou à distance.

Une nouvelle posture de coach pour les formateurs

C'est un outil puissant pour renforcer sa posture de coach auprès de ses apprenants. Lorsqu'un apprenant est sur la bonne voie, le formateur, ou la formatrice, peut par exemple le féliciter et ainsi doper son engagement. À l'inverse, lorsque des apprenants voient leur courbe de progression stagner, les enseignants peuvent lui envoyer des messages personnalisés d'encouragement, pour éviter qu'ils baissent les bras.

Notre expert vous recommande :

Formateur : évaluer l'efficacité des formations

Evaluation de la formation : les fondamentaux

La mesure de la satisfaction à l'issue de la formation

Les enquêtes de satisfaction : un premier niveau d'évaluation

À l'issue des formations, il est fréquent que les entreprises (ou leurs partenaires de formation) envoient, à leurs apprenants, des enquêtes de satisfaction. Ces questionnaires permettent notamment de recueillir l'avis des apprenants sur l'utilité de la formation.

Le Net Promoter Score : un indicateur clé à suivre

« Il est également intéressant de leur demander s'ils recommanderaient la formation afin de générer un « Net Promoter Score » (NPS), qui est un indicateur particulièrement intéressant à suivre », explique Carolina Gracia Moreno. Ici aussi, il est difficile de donner une moyenne, chaque parcours de formation ayant des objectifs différents.

Le NPS : quand est-il vraiment bon ?

L’apprenant répond sur une échelle de 0 à 10, mais la donnée NPS va de –100 à +100. Plus il est haut, plus il y a de promoteurs (notes 9–10) que de détracteurs (0–6). La grille la plus utilisée est la suivante :

  • < 0 : problématique (plus de détracteurs que de promoteurs).
  • 0 à 20 : correct / acceptable, mais améliorable.
  • 20 à 50 : bon (bonne loyauté, expérience solide).
  • 50 à 70 : excellent (très forte préférence).
  • > 70 : “world-class” / exceptionnel, typique des leaders adorés.

Note : au-dessus de 20 = bon, au-dessus de 50 = très bon.

En résumé, un NPS n’est pas juste un KPI "de vitrine". L’entreprise Bain & Company, à l’origine du NPS, insiste sur l’usage en pilotage d’expérience et sur la comparaison avec des benchmarks pertinents. Par exemple :

  • NPS = 35 dans un service où la moyenne est 10 → très bon.
  • NPS = 35 dans un secteur où la moyenne est 45 → ok mais en retard.

L'évaluation en situation de travail : mesurer l'impact réel

Pour évaluer l'efficacité réelle d'une formation, il est également important d'exploiter les datas recueillies en situation de travail. L'enjeu est ici de savoir si la formation suivie par les apprenants a généré de nouveaux comportements une fois en poste. Sonder les apprenants sur le sujet quelques semaines après leur formation est une bonne approche, « même si l'auto-déclaratif présente forcément des limites ».

Le croisement des données : l'évaluation par les pairs

D'où l'intérêt de croiser cette auto-évaluation avec une évaluation par les pairs. « C'est l'option choisie par l'un de nos clients : le groupe Aston Martin. Après avoir formé ses cadres au leadership, Cegos a déployé un outil permettant d'évaluer, par les pairs, le comportement des leaders en situation de travail. Cette approche a permis au groupe de recueillir de nombreuses données sur les compétences acquises par les apprenants », illustre-t-elle.

Un argument de poids pour les responsables formation

Or, c'est précisément ce qu'attendent les entreprises : pouvoir tracer la montée en compétences de leurs salariés. C'est aussi un argument de poids pour les responsables formation : apporter, au Codir, des données tangibles sur l'impact d'une formation leur permet, par exemple, de négocier des budgets plus importants.

Notre expert vous recommande :

Devenir Digital Learning Manager

Accompagner la transformation digitale des pratiques d'apprentissage

L'intelligence artificielle, une bonne alliée pour exploiter les données ?

Des outils d'IA pour analyser les volumes massifs de données

Il existe aujourd'hui de nombreux outils boostés à l'intelligence artificielle – comme ceux de business intelligence – qui permettent aux professionnels de la formation d'analyser les volumes massifs de big data qu'ils recueillent et de les rendre intelligibles.

ChatGPT au service de l'analyse des enquêtes de satisfaction

ChatGPT, qui est d'ores et déjà entre les mains des formateurs, fait partie de ceux-là. « Avec de bons prompts (voir encadré), il est par exemple possible de demander à ChatGPT d'analyser les enquêtes de satisfaction des apprenants et de suggérer une nouvelle modalité pédagogique en phase avec les retours des apprenants », illustre Carolina Gracia Moreno.

L'IA pour faciliter l'ancrage des connaissances dans le flux de travail

Par ailleurs, l'intelligence artificielle peut aussi faciliter l'ancrage des connaissances dans le flux de travail. « Il existe par exemple des tuteurs intelligents qui suggèrent des mini-exercices avec une correction en temps réel aux ex-apprenants, leur permettant ainsi d'ancrer leurs connaissances durablement.

Notre expert vous recommande :

Utiliser l'IA pour concevoir, animer et évaluer une formation

L'intelligence artificielle (IA) pour la formation
4.3 /5 (29 avis)

L'accompagnement personnalisé piloté par l'IA

Ces solutions d'accompagnement personnalisé, pilotées par l'IA, analysent en continu les données d'apprentissage pour s'adapter au profil de chaque apprenant », conclut-elle.

Un exemple concret de prompt sur ChatGPT 

Rôle : Tu es un(e) ingénieur(e) pédagogique expert(e) en analyse de la voix apprenant et en design de modalités blended/hybrides, avec une maîtrise des exigences Qualiopi.

Contexte : Tu dois faire évoluer une offre de formation existante à partir d’enquêtes de satisfaction apprenants (données quantitatives et verbatims), en restant réaliste et conforme Qualiopi.

Objectif :

  1. Analyser les enquêtes pour identifier tendances, irritants, attentes et besoins prioritaires.
  2. Relier ces besoins à la modalité actuelle.
  3. Proposer une nouvelle modalité pédagogique (ou une évolution majeure) alignée sur les retours.

Tâches :

  • Synthétiser les enseignements clés (quanti + quali).
  • Produire un diagnostic “besoins apprenants ↔ modalité actuelle”.
  • Recommander une nouvelle modalité justifiée par les données.

Données à fournir :

  • Contexte de la formation.
  • Résultats quantitatifs.
  • Verbatims apprenants.

Contraintes :

  • Aucune supposition non fondée : toute hypothèse doit être signalée.
  • Recommandation opérationnelle, réellement différenciante, et explicitement appuyée sur les retours.

Sur le même sujet : 

Learning Technologies France 2026 : l’IA redessine l’expérience apprenante

Comment le L&D peut accompagner la transformation IA en entreprise ? Plan en 5 actes

Avez-vous trouvé cet article utile ?
Expert

Carolina Gracia Moreno

Carolina Gracia moreno, Manager de l’Offre Ingénierie Pédagogique et Efficacité Professionnelle chez Cegos, est une actrice clé dans la conception et l’optimisation des dispositifs de formation. Après avoir rejoint Cegos en 2020 comme consultante cheffe de projet au sein de l’équipe Sur-Mesure, elle met aujourd’hui son expertise au service de l’innovation pédagogique et du développement des compétences. Elle pilote la création d’offres impactantes, veille à la qualité des interventions et accompagne la montée en puissance des formateurs. Son engagement illustre la mission de Cegos : transformer l’apprentissage en leviers de performance durable pour les individus et les organisations. En savoir plus

Recevez nos newsletters

Formation, Management, Commercial, Efficacité pro

Abonnez-vous